Perirhinal cortex and temporal lobe epilepsy
نویسندگان
چکیده
The perirhinal cortex-which is interconnected with several limbic structures and is intimately involved in learning and memory-plays major roles in pathological processes such as the kindling phenomenon of epileptogenesis and the spread of limbic seizures. Both features may be relevant to the pathophysiology of mesial temporal lobe epilepsy that represents the most refractory adult form of epilepsy with up to 30% of patients not achieving adequate seizure control. Compared to other limbic structures such as the hippocampus or the entorhinal cortex, the perirhinal area remains understudied and, in particular, detailed information on its dysfunctional characteristics remains scarce; this lack of information may be due to the fact that the perirhinal cortex is not grossly damaged in mesial temporal lobe epilepsy and in models mimicking this epileptic disorder. However, we have recently identified in pilocarpine-treated epileptic rats the presence of selective losses of interneuron subtypes along with increased synaptic excitability. In this review we: (i) highlight the fundamental electrophysiological properties of perirhinal cortex neurons; (ii) briefly stress the mechanisms underlying epileptiform synchronization in perirhinal cortex networks following epileptogenic pharmacological manipulations; and (iii) focus on the changes in neuronal excitability and cytoarchitecture of the perirhinal cortex occurring in the pilocarpine model of mesial temporal lobe epilepsy. Overall, these data indicate that perirhinal cortex networks are hyperexcitable in an animal model of temporal lobe epilepsy, and that this condition is associated with a selective cellular damage that is characterized by an age-dependent sensitivity of interneurons to precipitating injuries, such as status epilepticus.
منابع مشابه
MR volumetry of the entorhinal, perirhinal, and temporopolar cortices in drug-refractory temporal lobe epilepsy.
BACKGROUND AND PURPOSE The occurrence of damage in the entorhinal, perirhinal, and temporopolar cortices in unilateral drug-refractory temporal lobe epilepsy (TLE) was investigated with quantitative MR imaging. METHODS Volumes of the entorhinal, perirhinal, and temporopolar cortices were measured in 27 patients with unilateral drug-refractory TLE, 10 patients with extratemporal partial epilep...
متن کاملRAPID COMMUNICATION The Human Perirhinal Cortex and Recognition Memory
The importance of the perirhinal cortex for visual recognition memory performance is undisputed. However, it has not been clear whether its contribution to performance is mainly perceptual, or mainly mnemonic, or whether the perirhinal cortex contributes to both perception and memory. We determined the effects of medial temporal lobe damage that includes complete damage to the perirhinal cortex...
متن کاملUntangling memory from perception in the medial temporal lobe.
An active debate in the learning and memory literature centers on the question of whether the perirhinal cortex, part of the medial temporal lobe (MTL), plays its major role in declarative/relational learning and memory or if it also makes an important contribution to high- level perception, similar to the functions of the adjacent visual area TE. Here I consider evidence from neuroanatomical a...
متن کاملMesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and parahippocampal region.
Despite neuropathological and electrophysiological evidence for the involvement of parahippocampal structures in temporal lobe epilepsy (TLE), little attention has been paid to morphometric measurements of these structures in patients with TLE. Using high resolution MRI, we previously showed that the volume of the entorhinal cortex was decreased in patients with TLE. The purpose of this study w...
متن کاملHippocampus, perirhinal cortex, and complex visual discriminations in rats and humans.
Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with perirhinal lesions were impaired and did not ex...
متن کامل